Markdown Math test1
This is the first paragraph.
1(√𝜙√5−𝜙)𝑒25𝜋=1+𝑒−2𝜋1+𝑒−4𝜋1+𝑒−6𝜋1+𝑒−8𝜋1+⋯\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
Two mathematical blocks in a row
1(√𝜙√5−𝜙)𝑒25𝜋=1+𝑒−2𝜋1+𝑒−4𝜋1+𝑒−6𝜋1+𝑒−8𝜋1+⋯\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
1(√𝜙√5−𝜙)𝑒25𝜋=1+𝑒−2𝜋1+𝑒−4𝜋1+𝑒−6𝜋1+𝑒−8𝜋1+⋯\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
inline mathematics
This is an example for inline mathematics. When A=0 and a=1 then A=a must be always true.
Examples from the mj3-demos
When a=0, there are two solutions to ax2+bx+c=0 and they are
𝑥=−𝑏±√𝑏2−4𝑎𝑐2𝑎 x = {-b \pm \sqrt{b^2-4ac} \over 2a}
˙𝑥=𝜎(𝑦−𝑥)˙𝑦=𝜌𝑥−𝑦−𝑥𝑧˙𝑧=−𝛽𝑧+𝑥𝑦\begin{align}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{align}
(𝑛∑𝑘=1𝑎𝑘𝑏𝑘)2≤(𝑛∑𝑘=1𝑎2𝑘)(𝑛∑𝑘=1𝑏2𝑘)\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2} \leq
\left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
𝐕1×𝐕2=∣
∣
∣
∣𝐢𝐣𝐤𝜕𝑋𝜕𝑢𝜕𝑌𝜕𝑢0𝜕𝑋𝜕𝑣𝜕𝑌𝜕𝑣0∣
∣
∣
∣\mathbf{V}_1 \times \mathbf{V}_2 =
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \\
\end{vmatrix}
∇×⃗𝐁−1𝑐𝜕⃗𝐄𝜕𝑡=4𝜋𝑐⃗𝐣∇⋅⃗𝐄=4𝜋𝜌∇×⃗𝐄+1𝑐𝜕⃗𝐁𝜕𝑡=⃗𝟎∇⋅⃗𝐁=0\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}
Use non-standard symbols
To convert \bm you need to define a macro.
𝒂=𝒃+𝒄\bm{a} = \bm{b} + \bm{c}